Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 250
Filtrar
1.
Biochim Biophys Acta Rev Cancer ; : 189107, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734035

RESUMO

The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38646899

RESUMO

INTRODUCTION: The phosphatidylinositol-3-kinase (PI3K) pathway is a crucial intracellular signaling pathway involved in cell growth, proliferation, survival, and metabolism, which is aberrant in almost all types of cancer. Extensive research is dedicated to elucidating the mechanisms of action and developing PI3K inhibitors. However, only a small portion of the research has been successfully translated into clinical applications. AREAS COVERED: In this review, we present an overview of the pivotal role that the PI3K pathway plays in tumor development. We discuss the current landscape of PI3K inhibitors in preclinical and clinical trials, address the mechanisms of resistance to PI3K inhibition along with their associated toxic effects, and highlight significant advancements in preclinical research of this field. EXPERT OPINION: Based on our study and comprehension of PI3K, we provide a recapitulation of the key lessons learned from the research process and propose potential measures for improvement that could prove valuable.

3.
MedComm (2020) ; 5(5): e539, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680520

RESUMO

Urgent research into innovative severe acute respiratory coronavirus-2 (SARS-CoV-2) vaccines that may successfully prevent various emerging emerged variants, particularly the Omicron variant and its subvariants, is necessary. Here, we designed a chimeric adenovirus-vectored vaccine named Ad5-Beta/Delta. This vaccine was created by incorporating the receptor-binding domain from the Delta variant, which has the L452R and T478K mutations, into the complete spike protein of the Beta variant. Both intramuscular (IM) and intranasal (IN) vaccination with Ad5-Beta/Deta vaccine induced robust broad-spectrum neutralization against Omicron BA.5-included variants. IN immunization with Ad5-Beta/Delta vaccine exhibited superior mucosal immunity, manifested by higher secretory IgA antibodies and more tissue-resident memory T cells (TRM) in respiratory tract. The combination of IM and IN delivery of the Ad5-Beta/Delta vaccine was capable of synergically eliciting stronger systemic and mucosal immune responses. Furthermore, the Ad5-Beta/Delta vaccination demonstrated more effective boosting implications after two dosages of mRNA or subunit recombinant protein vaccine, indicating its capacity for utilization as a booster shot in the heterologous vaccination. These outcomes quantified Ad5-Beta/Delta vaccine as a favorable vaccine can provide protective immunity versus SARS-CoV-2 pre-Omicron variants of concern and BA.5-included Omicron subvariants.

4.
J Hematol Oncol ; 17(1): 13, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38520006

RESUMO

Inflammation has accompanied human beings since the emergence of wounds and infections. In the past decades, numerous efforts have been undertaken to explore the potential role of inflammation in cancer, from tumor development, invasion, and metastasis to the resistance of tumors to treatment. Inflammation-targeted agents not only demonstrate the potential to suppress cancer development, but also to improve the efficacy of other therapeutic modalities. In this review, we describe the highly dynamic and complex inflammatory tumor microenvironment, with discussion on key inflammation mediators in cancer including inflammatory cells, inflammatory cytokines, and their downstream intracellular pathways. In addition, we especially address the role of inflammation in cancer development and highlight the action mechanisms of inflammation-targeted therapies in antitumor response. Finally, we summarize the results from both preclinical and clinical studies up to date to illustrate the translation potential of inflammation-targeted therapies.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Citocinas/metabolismo , Inflamação/metabolismo , Microambiente Tumoral
5.
Genes Dis ; 11(4): 101066, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38550714

RESUMO

The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants has decreased the efficacy of SARS-CoV-2 vaccines in containing coronavirus disease 2019 (COVID-19) over time, and booster vaccination strategies are urgently necessitated to achieve sufficient protection. Intranasal immunization can improve mucosal immunity, offering protection against the infection and sustaining the spread of SARS-CoV-2. In this study, an intranasal booster of the RBD-HR vaccine after two doses of the mRNA vaccine significantly increased the levels of specific binding antibodies in serum, nasal lavage fluid, and bronchoalveolar lavage fluid compared with only two doses of mRNA vaccine. After intranasal boosting with the RBD-HR vaccine, the levels of serum neutralizing antibodies against prototype and variant strains of SARS-CoV-2 pseudoviruses were markedly higher than those in mice receiving mRNA vaccine alone, and intranasal boosting with the RBD-HR vaccine also inhibited the binding of RBD to hACE2 receptors. Furthermore, the heterologous intranasal immunization regimen promoted extensive memory T cell responses and activated CD103+ dendritic cells in the respiratory mucosa, and potently enhanced the formation of T follicular helper cells and germinal center B cells in vital immune organs, including mediastinal lymph nodes, inguinal lymph nodes, and spleen. Collectively, these data infer that heterologous intranasal boosting with the RBD-HR vaccine elicited broad protective immunity against SARS-CoV-2 both locally and systemically.

6.
Med Res Rev ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38323921

RESUMO

Adjuvants are of critical value in vaccine development as they act on enhancing immunogenicity of antigen and inducing long-lasting immunity. However, there are only a few adjuvants that have been approved for clinical use, which highlights the need for exploring and developing new adjuvants to meet the growing demand for vaccination. Recently, emerging evidence demonstrates that the cGAS-STING pathway orchestrates innate and adaptive immunity by generating type I interferon responses. Many cGAS-STING pathway agonists have been developed and tested in preclinical research for the treatment of cancer or infectious diseases with promising results. As adjuvants, cGAS-STING agonists have demonstrated their potential to activate robust defense immunity in various diseases, including COVID-19 infection. This review summarized the current developments in the field of cGAS-STING agonists with a special focus on the latest applications of cGAS-STING agonists as adjuvants in vaccination. Potential challenges were also discussed in the hope of sparking future research interests to further the development of cGAS-STING as vaccine adjuvants.

7.
Genes Dis ; 11(3): 100989, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38303927

RESUMO

Ovarian cancer is the tumor with the highest mortality among gynecological malignancies. Studies have confirmed that paclitaxel chemoresistance is associated with increased infiltration of tumor-associated macrophages (TAMs) in the microenvironment. Colony-stimulating factor 1 (CSF-1) receptor (CSF-1R) plays a key role in regulating the number and differentiation of macrophages in certain solid tumors. There are few reports on the effects of targeted inhibition of CSF-1R in combination with chemotherapy on ovarian cancer and the tumor microenvironment. Here, we explored the antitumor efficacy and possible mechanisms of the CSF - 1R inhibitor pexidartinib (PLX3397) when combined with the first-line chemotherapeutic agent paclitaxel in the treatment of ovarian cancer. We found that CSF-1R is highly expressed in ovarian cancer cells and correlates with poor prognosis. Treatment by PLX3397 in combination with paclitaxel significantly inhibited the growth of ovarian cancer both in vitro and in vivo. Blockade of CSF-1R altered the macrophage phenotype and reprogrammed the immunosuppressive cell population in the tumor microenvironment.

9.
Cell Prolif ; 57(1): e13529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37528567

RESUMO

Neutrophil is a pathophysiological character in Alzheimer's disease. The pathogen for neutrophil activation in cerebral tissue is the accumulated amyloid protein. In our present study, neutrophils infiltrate into the cerebra in two models (transgenic model APP/PS1 and stereotactic injection model) and promote neuron apoptosis, releasing their cellular constituents, including mitochondria and mitochondrial DNA (mtDNA). We found that both Aß1-42 and mtDNA could provoke neutrophil infiltration into the cerebra, and they had synergistic effects when they presented together. This neutrophillic neuroinflammation upregulates expressions of STING, NLRP3 and IL-1ß. These inflammatory cytokines with mtDNA constitute the mtDNA-STING-NLRP3/IL-1ß axis, which is the prerequisite for neutrophil infiltration. When any factor in this pathway is depleted, the migration of neutrophils into cerebral tissue is ceased, with neurons and cognitive function being protected. Thus, we provide a novel perspective to alleviate the progression of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inflamassomos/metabolismo , DNA Mitocondrial/metabolismo , Infiltração de Neutrófilos , Mitocôndrias/metabolismo , Neurônios/metabolismo , Camundongos Transgênicos
10.
Cell Prolif ; 57(4): e13570, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37905494

RESUMO

Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.


Assuntos
Neoplasias Pulmonares , Células Supressoras Mieloides , Fosfatidilcolinas , Animais , Camundongos , Cisplatino/farmacologia , Leucotrieno B4 , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
11.
Proc Natl Acad Sci U S A ; 120(50): e2220496120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38064514

RESUMO

Massive GGGGCC (G4C2) repeat expansion in C9orf72 and the resulting loss of C9orf72 function are the key features of ~50% of inherited amyotrophic lateral sclerosis and frontotemporal dementia cases. However, the biological function of C9orf72 remains unclear. We previously found that C9orf72 can form a stable GTPase activating protein (GAP) complex with SMCR8 (Smith-Magenis chromosome region 8). Herein, we report that the C9orf72-SMCR8 complex is a major negative regulator of primary ciliogenesis, abnormalities in which lead to ciliopathies. Mechanistically, the C9orf72-SMCR8 complex suppresses the primary cilium as a RAB8A GAP. Moreover, based on biochemical analysis, we found that C9orf72 is the RAB8A binding subunit and that SMCR8 is the GAP subunit in the complex. We further found that the C9orf72-SMCR8 complex suppressed the primary cilium in multiple tissues from mice, including but not limited to the brain, kidney, and spleen. Importantly, cells with C9orf72 or SMCR8 knocked out were more sensitive to hedgehog signaling. These results reveal the unexpected impact of C9orf72 on primary ciliogenesis and elucidate the pathogenesis of diseases caused by the loss of C9orf72 function.


Assuntos
Esclerose Lateral Amiotrófica , Proteína C9orf72 , Cílios , Demência Frontotemporal , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Cílios/metabolismo , Expansão das Repetições de DNA , Demência Frontotemporal/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Células HEK293
13.
MedComm (2020) ; 4(6): e429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38020716

RESUMO

Mutations in LRRK2 (encoding leucine-rich repeat kinase 2 protein, LRRK2) are the most common genetic risk factors for Parkinson's disease (PD), and increased LRRK2 kinase activity was observed in sporadic PD. Therefore, inhibition of LRRK2 has been tested as a disease-modifying therapeutic strategy using the LRRK2 mutant mice and sporadic PD. Here, we report a newly designed molecule, FL090, as a LRRK2 kinase inhibitor, verified in cell culture and animal models of PD. Using the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mice and SNCA A53T transgenic mice, FL090 ameliorated motor dysfunctions, reduced LRRK2 kinase activity, and rescued loss in the dopaminergic neurons in the substantia nigra. Notably, by RNA-Seq analysis, we identified microtubule-associated protein 1 (MAP1B) as a crucial mediator of FL090's neuroprotective effects and found that MAP1B and LRRK2 co-localize. Overexpression of MAP1B rescued 1-methyl-4-phenylpyridinium induced cytotoxicity through rescuing the lysosomal function, and the protective effect of FL090 was lost in MAP1B knockout cells. Further studies may be focused on the in vivo mechanisms of MAP1B and microtubule function in PD. Collectively, these findings highlight the potential of FL090 as a therapeutic agent for sporadic PD and familial PD without LRRK2 mutations.

14.
MedComm (2020) ; 4(6): e424, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37929016

RESUMO

Patients with central nervous system (CNS) lymphoma face limited treatment options and poor treatment outcomes, emphasizing the urgent need for effective therapeutic strategies. One limiting factor contributing to the suboptimal efficacy is the inadequate penetration of most treatment drugs across the blood-brain barrier (BBB). Recent insights into the pathophysiology of CNS lymphoma have identified the Bruton's tyrosine kinase (BTK) signaling pathway as a potential target. Some clinical trials have shown impressive responses to BTK inhibitors in CNS lymphoma. However, currently approved BTK inhibitors have low BBB penetration rates, limiting their efficacy. In this study, we discovered that JDB175, a novel and highly selective BTK inhibitor, exhibits excellent BBB penetration capabilities and demonstrates favorable activity in a mouse model of CNS lymphoma while showing no significant signs of toxicity. JDB175 effectively inhibits the BTK signaling pathway in human lymphoma cells, suppressing their proliferation, inducing cell cycle arrest, and promoting apoptosis. The significance of this study lies in addressing the critical unmet medical need for effective treatments for CNS lymphoma. This finding indicates a promising avenue for improved treatments in CNS lymphoma, potentially opening doors for further clinical investigation and therapeutic advancements.

15.
Mol Cancer ; 22(1): 172, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853437

RESUMO

Cancer stem cells (CSCs), initially identified in leukemia in 1994, constitute a distinct subset of tumor cells characterized by surface markers such as CD133, CD44, and ALDH. Their behavior is regulated through a complex interplay of networks, including transcriptional, post-transcriptional, epigenetic, tumor microenvironment (TME), and epithelial-mesenchymal transition (EMT) factors. Numerous signaling pathways were found to be involved in the regulatory network of CSCs. The maintenance of CSC characteristics plays a pivotal role in driving CSC-associated tumor metastasis and conferring resistance to therapy. Consequently, CSCs have emerged as promising targets in cancer treatment. To date, researchers have developed several anticancer agents tailored to specifically target CSCs, with some of these treatment strategies currently undergoing preclinical or clinical trials. In this review, we outline the origin and biological characteristics of CSCs, explore the regulatory networks governing CSCs, discuss the signaling pathways implicated in these networks, and investigate the influential factors contributing to therapy resistance in CSCs. Finally, we offer insights into preclinical and clinical agents designed to eliminate CSCs.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais , Transição Epitelial-Mesenquimal , Células-Tronco Neoplásicas/metabolismo , Microambiente Tumoral
16.
Oncogene ; 42(37): 2737-2750, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37567973

RESUMO

The tumor-associated macrophage (TAM) is the most abundant group of immune cells in the tumor microenvironment (TME), which plays a critical role in the regulation of tumor progression and treatment resistance. Based on different polarization status, TAMs may also induce antitumor immune responses or immunosuppression. The present study identified JMJD6 (Jumonji domain-containing 6) as a novel modulator of TAM activation, the upregulation of which was associated with the immunosuppressive activities of TAMs. JMJD6 deficiency attenuated the growth of both Lewis lung carcinoma (LLC) tumors and B16F10 melanomas by reversing M2-like activation of macrophages, and sensitized tumors to immune checkpoint blockades (ICBs). Moreover, the JMJD6-induced inhibition of M2 polarization was potentially mediated by the STAT3/IL-10 signaling. These findings highlight the regulatory activities of JMJD6 in TAM polarization, and the therapeutic potential of JMJD6/STAT3/IL-10 axis blockades to enhance the efficacy of ICBs in cancer treatment.


Assuntos
Histona Desmetilases com o Domínio Jumonji , Neoplasias , Macrófagos Associados a Tumor , Humanos , Linhagem Celular Tumoral , Interleucina-10/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Macrófagos/patologia , Neoplasias/patologia , Transdução de Sinais , Fator de Transcrição STAT3/metabolismo , Microambiente Tumoral , Polaridade Celular
17.
Adv Sci (Weinh) ; 10(28): e2207518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37585564

RESUMO

Recently, the major challenge in treating osteosarcoma patients is the metastatic disease, most commonly in the lungs. However, the underlying mechanism of recurrence and metastasis of osteosarcoma after surgical resection of primary tumor remains unclear. This study aims to investigate whether the pulmonary metastases characteristic of osteosarcoma is associated with surgical treatment and whether surgery contributes to the formation of pre-metastatic niche in the distant lung tissue. In the current study, the authors observe the presence of circulating tumor cells in patients undergoing surgical resection of osteosarcoma which is correlated to tumor recurrence. The pulmonary infiltrations of neutrophils and Gr-1+ myeloid cells are characterized to form a pre-metastatic niche upon the exposure of circulating tumor cells after surgical resection. It is found that mitochondrial damage-associated molecular patterns released from surgical resection contribute to the formation of pre-metastatic niche in lung through IL-1ß secretion. This study reveals that surgical management for osteosarcoma, irrespective of the primary tumor, might promote the formation of postoperative pre-metastatic niche in lung which is with important implications for developing rational therapies during peri-operative period.

18.
Vaccines (Basel) ; 11(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37515034

RESUMO

Vaccination is one of the most effective strategies to control epidemics. With the deepening of people's awareness of vaccination, there is a high demand for vaccination. Hence, a flexible, rapid, and cost-effective vaccine platform is urgently needed. The baculovirus expression vector system (BEVS) has emerged as a promising technology for vaccine production due to its high safety, rapid production, flexible product design, and scalability. In this review, we introduced the development history of BEVS and the procedures for preparing recombinant protein vaccines using the BEVS platform and summarized the features and limitations of this platform. Furthermore, we highlighted the progress of the BEVS platform-related research, especially in the field of vaccine. Finally, we provided a new prospect for BEVS in future vaccine manufacturing, which may pave the way for future BEVS-derived vaccine development.

19.
Signal Transduct Target Ther ; 8(1): 252, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37336889

RESUMO

The COVID-19 response strategies in Chinese mainland were recently adjusted due to the reduced pathogenicity and enhanced infectivity of Omicron subvariants. In Chengdu, China, an infection wave was predominantly induced by the BA.5 subvariant. It is crucial to determine whether the hybrid anti-SARS-CoV-2 immunity following BA.5 infection, coupled with a variety of immune background, is sufficient to shape the immune responses against newly emerged Omicron subvariants, especially for XBB lineages. To investigate this, we collected serum and nasal swab samples from 108 participants who had been infected in this BA.5 infection wave, and evaluated the neutralization against pseudoviruses. Our results showed that convalescent sera from individuals, regardless of vaccination history, had remarkably compromised neutralization capacities against the newly emerged XBB and XBB.1.5 subvariants. Although post-vaccination with BA.5 breakthrough infection slightly elevated plasma neutralizing antibodies against a part of pseudoviruses, the neutralization activities were remarkably impaired by XBB lineages. Furthermore, we analyzed the impacts of the number of vaccinations, age, and sex on the humoral and cellular immune response after BA.5 infection. Our findings suggest that the neutralization against XBB lineages that elicited by current hybrid immunity after BA.5 infection, are remained at low levels, indicating an urgent need for the development of next-generation of COVID-19 vaccines that designed based on the XBB sub-lineages and other future variants.


Assuntos
Anticorpos Neutralizantes , COVID-19 , Humanos , Povo Asiático , COVID-19/imunologia
20.
Nat Commun ; 14(1): 2678, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160882

RESUMO

Mucosal immunity plays a significant role in the first-line defense against viruses transmitted and infected through the respiratory system, such as SARS-CoV-2. However, the lack of effective and safe adjuvants currently limits the development of COVID-19 mucosal vaccines. In the current study, we prepare an intranasal vaccine containing cationic crosslinked carbon dots (CCD) and a SARS-CoV-2 antigen, RBD-HR with spontaneous antigen particlization. Intranasal immunization with CCD/RBD-HR induces high levels of antibodies with broad-spectrum neutralization against authentic viruses/pseudoviruses of Omicron-included variants and protects immunized female BALB/c mice from Omicron infection. Despite strong systemic cellular immune response stimulation, the intranasal CCD/RBD-HR vaccine also induces potent mucosal immunity as determined by the generation of tissue-resident T cells in the lungs and airway. Moreover, CCD/RBD-HR not only activates professional antigen-presenting cells (APCs), dendritic cells, but also effectively targets nasal epithelial cells, promotes antigen binding via sialic acid, and surprisingly provokes the antigen-presenting of nasal epithelial cells. We demonstrate that CCD is a promising intranasal vaccine adjuvant for provoking strong mucosal immunity and might be a candidate adjuvant for intranasal vaccine development for many types of infectious diseases, including COVID-19.


Assuntos
COVID-19 , Vacinas , Feminino , Animais , Camundongos , Humanos , SARS-CoV-2 , COVID-19/prevenção & controle , Adjuvantes Imunológicos , Vacinas contra COVID-19 , Carbono , Cátions
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA